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Introduction 
It is widely accepted that cancer cells avidly uptake and consume glucose (1).  This increased carbon flux 

through glycolysis is a well-established characteristic of transformed cells, especially in tumor cells that exhibit 
high proliferation rates.  Because of this phenotype, anabolic metabolism, such as de novo synthesis of fatty 
acids, is inherently active in most cancer cells (2, 3). Increased levels of de novo fatty acid synthesis have been 
recognized as a prominent tumor-associated characteristic since the 1950’s (4). More recently, the sole enzyme 
to synthesize de novo fatty acids, Fatty Acid Synthase (FASN), was observed to be elevated in a wide variety of 
human cancers by immunohistochemical staining relative to adjacent normal tissue (5).  Recently, Thyroid 
hormone responsive protein spot 14 (THRSP, Spot14, S14) was also shown to be a prognostic indicator of poor 
clinical outcome (6). Increased S14 and FASN abundance in a various cancers was shown to be predictive of 
tumor aggressiveness; and, in women afflicted with clinically aggressive breast cancers, S14 and FASN 
overexpression is highly correlated with reduced disease free survival (7, 8).  Much is understood regarding 
regulation of FASN, but little is known about the regulation of S14 or its molecular mechanism. When S14 is 
lost due to genomic knock out in mice (9) or siRNA knockdown in hepatocyte cell culture (10), a reduction of 
de novo fatty acid synthesis follows. Two lines of evidence exist for S14 function in modification of 
metabolism: one in the nucleus to regulate transcriptional/mRNA processes (11), the other in the cytosol at the 
protein level to alter lipogenic enzyme activity (12).  This study attempts to determine what hormones regulate 
S14 gene expression, and what potential proteins interact with S14 to confer its function. 
 
Project Review 

The broad goals of this project were to examine the functional characteristics of tumor associated S14 and 
to identify potential interacting proteins to elucidate mechanism. The level of endogenous S14 gene expression 
and protein abundance is miniscule in all normal mammary and tumor tissue culture cells examined to date. 
This finding prompted generation of stable, doxycycline (dox) inducible S14 normal CiT3 and ErbB2 tumor cell 
lines.  To test the effect of S14 overexpression on gene regulation, normal mammary epithelial cells under 
growth conditions stably overexpressing S14 showed only minor differences in expression of glycolytic and de 
novo fatty acid genes.  Only the chief glucose transporter (Glut1), aldolase C, and pyruvate carboxylase had 
significantly different levels (annual report 2009). Although statistically significant for change, the differences 
were moderate (< 2-fold) and likely not due to S14 influence as a transcriptional activator. We determined that 
overexpressed S14 is not nuclear, unless driven to the nucleus by creating a S14-NLS fusion protein. S14-NLS 
was observed in the nucleus by immunofluorescence and sub-cellular fractionation techniques, but no effects 
were detected for genes reported as responsive to S14 (annual report 2010). 

In addition to gene expression profiling, protein abundance was evaluated by immunoblot.  Overexpression 
of S14 did not vary protein levels of glycolysis and lipogenic pathway enzymes noticeably. No differences were 
detected in de novo fatty acid gene expression or protein levels due to overexpression of S14 ErbB2 tumor cell 
lines (annual report 2010). We compared normal serum with delipidated serum (DLS), and DLS +/- Oleic Acid, 
for effects of S14 overexpression in normal CiT3 and ErbB2 tumor cell lines. We observed no S14 dependent 
differences at the gene and protein level for de novo fatty acid synthesis pathway components, suggesting that 
S14 abundance does not alter levels of these factors. However, in normal CiT3 cells, phosphorylated ACLY 
was decreased in DLS but increased with Oleic Acid when S14 is overexpressed. 

Although no direct influence on gene expression or protein abundance due to S14 was observed, neutral 
lipid staining showed that CiT3 cells overexpressing S14 accumulated more lipid than controls (annual report 
2009).  Further analysis of the total lipid component using NMR Metabolomics showed significant increases in 
the quantity of intracellular (CH2)n and (CH3) acyl chains (i.e. fatty acids). Together, these data demonstrated 
that S14 activity occurs not at the transcriptional level to directly influence gene expression, but at the level of 
enzyme activity to promote anabolic metabolism.  We showed that S14 can homodimerize in mouse mammary 
cells, consistent with findings in the literature. Finally, we determined that S14 over expression conferred a 
slight growth advantage in CiT3-S14HA cells but not ErbB2 tumor cells with physiologic levels of glucose 
(annual report 2010). A large amount of evidence was gathered to demonstrate that mouse S14 does not act to 
regulate transcriptional activation in normal and tumor cell lines. Therefore, I hypothesize that S14 interacts 
with de novo fatty acid synthesis enzymes to carry out its function. 
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Body 

We profiled the gene expression of S14 and FASN in a variety of different human breast cancer cell lines.  
Shown in Figure 1 is the mRNA copy number for S14 (left panel) and FASN (right panel) profiled from a broad 
diversity of human breast cancer cell lines growing under standard media conditions.  Note the large variance in 

gene expression for FASN ranging 
from 20,000 to 550,000 copies per 25 
ng total RNA among all cell lines.  
The amplitude of S14 gene expression 
is approximately 1,000 times smaller 
than FASN levels and is at the cusp of 
detection for these quantitative PCR 
conditions (e.g. 25 ng input total 
RNA).  This result supports the 
previous findings in mouse cell lines 
wherein S14 gene expression is 
generally undetectable. 

  
Progestin induces S14 gene expression and lipid accumulation- T47D 
cell line represents a HER2 negative luminal human breast cancer, 
and is classified as a lipogenic phenotype breast cancer cell line.  We 
determined that both S14 and FASN are coordinately induced after 
24-hour treatment of the synthetic progestin R5020 in T47D breast 
cancer cells.  Figure 2 shows normalized gene expression data for 
S14 that increased 5.87 fold and FASN that increased 1.3 fold (p < 
0.0001) relative to vehicle (ethanol) alone. This observation indicates 
that progestin alone can induce both S14 and FASN, which may in 
turn initiate de novo fatty acid synthesis. To examine if the R5020 
mediated coordinate increase of S14 and FASN enhanced lipogenesis 
of T47D cells, we stained for neutral lipid droplets using bodipy. 
Figure 3 shows a qualitative enhancement of neutral lipid droplet 
staining (green) in T47D cells following 48 hours of 10 nM R5020 

treatment; nuclei are stained with DAPI (blue) for reference.  
Although more lipid is accumulated in response to R5020 
stimulation, bodipy immunofluorescence can not 
discriminate between cellular fatty acids synthesized via the 
de novo pathway and fatty acids taken up from the culture 
medium (serum). 
 
GC-MS Chromatograms and Mass Spectra of Fatty Acids- 
In order to discriminate between de novo fatty acids and 
serum-derived fatty acids (preformed), Gas Chromatography 
Mass Spectrometry (GC-MS) methods were developed.  
GC-MS differs from NMR analysis of lipid fractions in that 
GC-MS distinguishes between fatty acids based on acyl 
chain length.  We tested if the progestin stimulated induction 
of S14 and FASN in T47D cells promotes de novo fatty acid 
synthesis using GC-MS to both discriminate and quantify 
fatty acids from the cell. Chromatography resolves 
individual fatty acid pentafluorobenzyl esters of discrete 
chain lengths based on the specific retention time for each 

Figure 1. Gene expression profiling of S14 and FASN in a variety of human breast 
cancer cell lines grouped according sub-type and HER2 status.  FASN is highly 
expressed with a broad variance among cell lines, while S14 expression in generally 
not detectable. 

Figure 2. S14 and FASN gene expression 
profiling in T47D cells following either vehicle 
or 10 nM R5020 treatment for 24 hours. S14 
and FASN increased in a coordinate way (5.87 
and 1.3 fold, respectively; p < 0.0001). 

Vehicle' 10'nM'R5020'

A

B

C

D

Figure 3. T47D cells were examined for neutral lipid 
accumulation following 48 hours of either vehicle or 10 
nM R5020. Bodipy staining (green) is more pronounced 
post progestin treatment, and DAPI stained nuclei (blue) 
shown as reference. 
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chain length.  Individual fatty acid standards were purchased from a commercial vendor, mixed together, and 
the mixture was subjected to GC-MS analysis.  Figure 4 shows the total ion chromatogram (TIC, inset) and the 
extracted ion m/z spectra for individual fatty acids of various chain lengths (10, 12, 14,16, and 18) confirming 
the retention times for fatty acids extracted from the cells. Further, the unique m/z values of internal fatty acid 
standards distinguish these molecules from unlabeled fatty acids extracted from the cell. These labeled 
standards consisted of tri-deuterated 10:0 174 m/z, 12:0 202 m/z, 14:0 230 m/z, 18:0 286 m/z, 18:1 283 m/z, di-

deuterated 18:2 281 m/z, and 1,2,3,413C (4)-16:0 (259 m/z).  The 
mass spectrometer readily differentiated the unique m/z for each 
heavy atom standard of a given chain length.  Adding the heavy 
atom standard to each sample allows more precise quantitation of 
fatty acids of a given chain length since the standard and unknown 
analyte are measured simultaneously. 
 
Briefly, T47D cells were treated for 24 hours +/- R5020 and 
analyzed for total fatty acid content by extracting the total lipids 
from the cells.  Cells were grown until about 70% confluence in 
the presence of synthetic progestin R5020 or vehicle.  Cells were 
trypsinized, spun down and washed twice with ice cold PBS before 
lysis with ice cold 2:1 Methanol-Water. Lysed cells were cleared 
by centrifugation at 13,000 x G for 10 minutes at 4 C, supernatants 
were collected in new glass tubes, and total lipids were extracted 
using 1 mL of 2:1 isooctane-ethyl acetate.  Total lipids were taken 
to dryness using a Savant Speed Vacuum, and lipid pellets were 

resuspended in 500 uL of methanol.  600 uL of 1 M NaOH was added to saponify the lipids into free fatty acids 
for 1 hour, afterwards samples were acidified with 600 uL of 1 M HCL and extracted with 1 mL of isooctane. 
Fatty acids were taken to dryness by vacuum centrifugation and derivatized with 1% pentafluorobenzyl bromine 
and 1% N,N-Diisopropylethylamine for 30 minutes at room temperature.  Samples were dried down and pellets 
were resuspended in 100 uL of isooctane for GC-MS analysis. 
 

Fatty acids of the de novo fatty acids synthesis pathway are known 
to be < 16 carbons in chain length, while fatty acids imported from 
the serum are known to be > 18 carbons in chain length (called 
preformed).  Total fatty acid analysis refers to quantification of all 
fatty acids in the cell, including those in triglycerides, membrane 
phospholipids, lipid rafts, cholesteryl-esters, and free fatty acids.  
Figure 5 shows the total fatty acid analysis of lipid extracted from 
T47D cells following 24 hours of vehicle or R5020 for palmitic 
acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid 
(18:1), and linoleic acid (18:2).  The results show increased 
amounts of total fatty acids analyzed, with significance for both de 
novo fatty acids (16:0 and 16:1) and for preformed fatty acids 
(18:0, 18:1, and 18:2). This result indicates that addition of 
progestin R5020 is capable of increasing both de novo fatty acid 
synthesis and accumulation of preformed fatty acids from the 
serum in T47D cells.    

 
13C(U) glucose tracer incorporation- We tested whether the progestin mediated increase in palmitic acid (16:0) 
was specifically due to activity of the de novo fatty acid synthesis pathway.  In order to test differences in 
FASN activity in vivo, a 13C(U) glucose tracer assay was developed that directly measures 13C incorporation 
into de novo synthesized 13C-palmitate in the context of living cells.  This method relies on the unique capability 
of GC-MS to quantitate 13C incorporation into de novo synthesized palmitate based on discrimination using the 

Figure 5. Total fatty acid content was analyzed 
using GC-MS in T47D cells +/- 48 hours of 10nM 
R5020 treatment. Fatty acids from the total lipid 
fraction are shown by acyl chain length and 
saturation in nanograms per microgram total 
protein.  
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specific m/z of labeled palmitate from unlabeled palmitate (e.g. > 256 m/z  for incorporated from the non-
incorporated 255 m/z, respectively). Any 13C incorporation will be detected in the mass spectrometer as an 
increase in the m/z above unlabeled palmitate (less the contribution of naturally occurring 13C). For example, 
unlabeled palmitate has m/z of 255, and if 10 13C carbon atoms are incorporated the m/z ion is detected at 265 
m/z.  We chose ubiquitously labeled 13C glucose as a heavy atom tracer to evaluate 13C incorporation into 
palmitate, because it is well established that cancer cells avidly take up glucose as a source of energy and de 
novo fatty acid synthesis. 

Carbon originating in glucose is modified by the enzymes of 
glycolysis and ultimately is converted into the common entry 
molecule to the de novo fatty acid synthesis pathway, citrate.  The 
cartoon in Figure 6 shows many of the enzymes along the 
glycolysis pathway, including the chief glucose transporter Glut-1, 
and how the carbon from glucose is converted into citrate. 
Metabolic intermediate molecules are shown in italics and 
enzymes are shown in blue.  Figure 6 also depicts the uptake of 
preformed fatty acids from the serum, via the primary fatty acid 
transporter FatP, and how preformed fatty acids are combined with 
the de novo fatty acids into a triglyceride droplet for lipid 
accumulation.  The three enzymes of the de novo pathway are 
ATP Citrate Lyase (Acly), Acetyl-CoA Carboxylase 1 alpha 
(Acc1α), and Fatty Acid Synthase (FASN).  Of the three, FASN is 
absolutely required for the synthesis of palmitate in mammalian 
cells.  
 

FASN activity in vivo was evaluated in T47D cells using 5.5 mM 
13C(U) glucose for 24-hour treatment time-point (Figure 7).  Total 
fatty acids from 13C(U) glucose treated cells to screen for 13C 
incorporation into de novo synthesized fatty acids.  We found that 
13C(U) glucose readily incorporated into palmitic acid extracted from 
the total lipid fraction after 24-hours of labeled glucose 
administration. The incorporation of 13C from ubiquitously labeled 
glucose into palmitic acid is expressed in terms of the Atomic Percent 
Excess (APE). The changes in APE in figure 7 are significant for + 1 
(7%), + 2 (3.5%), and + 3 (3.7%) incorporation of 13C into palmitate 
(+1, +2, and +3 refer to the number of 13C atoms that have 
incorporated into the palmitate molecule). Thus, ions in addition to 
unlabeled palmitate detected (e.g. above natural abundance) can only 
originate from direct incorporation via cellular de novo palmitate 
synthesis originally derived via the glycolysis pathway.  This result 
shows that de novo fatty acid synthesis pathway activity is elevated 
by treatment with R5020 relative to vehicle only. 
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Key Research Accomplishments 
1. S14-HA overexpression did not induce gene expression in CiT3-S14HA cells. 
2. NLS-S14 localized to the nucleus, verified using two independent methods. 
3. NLS-S14 driven to the nucleus did not induce expression of S14 target genes in CiT3 cells. 
4. FLAG-S14 did not induce expression of S14 target genes in CiT3 cells. 
5. S14 self associates, as determined by two independent methods; the first report that mouse S14 

homodimerizes. 
6. The de novo fatty acid synthesis pathway is stabilized when serum lipids are limited in normal CiT3 

cells, but that ErbB2 tumor cells did not respond to lipid depleted serum. 
7. S14 overexpression conferred a growth advantage when serum lipids were limited only in CiT3-S14HA 

cells, but not in either 78617-S14HA or 85815-S14HA ErbB2 tumor cells. 
8. ErbB2-S14HA tumor cells do not respond to progestin R5020 because they do not express the 

Progesterone Receptor (PR). 
9. Determined that S14 is regulated in human T47D breast cancer cells by the progestin R5020. 
10. Showed qualitatively that neutral lipid droplet accumulation is enhanced by R5020 treatment in T47D 

cells. 
11. Learned to independently perform/analyze quantitative GC-MS detection of fatty acids of various chain 

lengths. 
12. Generated palmitate standard regression curve for FASN activity assay and determined optimal internal 

standard concentration for the FASN assay. 
13. Quantified the amounts of total fatty acids from cell extracts using GC-MS technology to show a R5020 

dependent increase in the de novo fatty acid palmitate. 
14. Developed a method to evaluate FASN enzyme activity by using 13C(U) glucose tracer to directly 

quantify 13C palmitic acid synthesis to show that 13C incorporation into palmitate is enhanced by R5020 
in T47D cells.  

 
Reportable Outcomes 

1. Data were presented at the Molecular Biology Program seminar (October 2009) 
2. Data were presented at the Molecular Biology Program retreat (November 2009) 
3. Data were presented at the Gordon research Conference for Mammary Gland Biology (June 2009) 
4. Data were presented at the Mammary Gland Program Project Retreat (January 2010) 
5. Data were presented in the Pathology Research in Progress Seminar (March 2010) 
6. Data were presented at the Breast Cancer Group Seminar (April 2010) 
7. Data were presented at the Mammary Gland Program Project Retreat (January 2011) 
8. Data were presented in the Pathology Research in Progress Seminar (March 2011) 
9. Data were presented at the Breast Cancer Group Seminar (May 2011) 
10. Data were presented at the Gordon research Conference for Mammary Gland Biology (June 2011) 
11. Data were presented at the Department of Defense Era of Hope (August 2011) 
12. Data were presented at the Milk and Lactation Conference (January 2012) 

 
Key Training Accomplishments 

1. Learned to perform co-immunoprecipitation techniques  
2. Use of contemporary linear ion trap liquid chromatography (LTQ-LC) mass spectrometer (Agilent) for 

identification of co-IP proteins 
3. Learned proteomics software, MASCOT and SCAFFOLD to identify peptide fragments and compare 

replicate data 
4. Learned to perform cell proliferation assays 
5. Learned to perform Luciferase reporter assays 
6. Capability to measure gene expression at the copy number level 
7. Use of state of the art Applied Biosystems 7500 Fast theromocycler for quantitative real-time PCR data 

acquisition 
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8. Learned to perform immunofluorescence on paraffin embedded tissue and fixed cell culture samples 
9. Use of state of the art Olympus IX81 inverted motorized microscope with spinning disk attachment for 

deconvolution fluorescent images 
10. Learned to extract aqueous and lipid metabolites from cells for NMR metabolomic analysis 
11. One- and two-dimensional 1H-MR spectra were obtained using a Bruker 500 MHz DRX spectrometer 

(Bruker Bisopin, Fremont, CA) using an inverse TXI probe. For metabolite identification in water 
soluble and lipid mammary gland extracts, a two-dimensional (2D)-H, C-HSQC (heteronuclear single 
quantum correlation) technique was used 

12. Learned total lipid extractions in preparations for GC-MS, including saponification of fatty acids from 
the total lipid fraction. 

13. GC-MS sample analysis was performed by negative ion chemical ionization (NICI) GC/MS using the 
Finnigan DSQ GC-MS system with a ZB-l column (15 m - 0.25 mm inner diameter 0.10 mm film 
thickness) from Phenomenex. 

 
 
Conclusions 

The function of tumor-associated protein S14 has long been associated with the synthesis of fatty acids de 
novo, but little is understood about S14 mechanism.  Conflicting paradigms exist regarding the molecular 
function of S14 and enhanced de novo fatty acid synthesis; one that suggests modification to transcription 
events in the nucleus (6) and the other suggests S14 works with metabolic proteins (12).  In our hands, S14 was 
never observed to alter the expression of lipid metabolism genes in normal mouse mammary epithelial cells or 
in mouse ErbB2 mammary cancer cells.  Even when S14 was driven to the nucleus, we still did not observe any 
change in reported S14 responsive genes in these cells.  All results to date support that S14 molecular 
mechanism in mammary cells does not function at the transcriptional level.  

Another goal of this project was to investigate what signaling factors regulate the expression to S14.  No 
clear evidence of S14 regulation was observed in mouse cell lines by prolactin, hydrocortisone, R5020, or 
thyroxine (T3) at the gene expression level and using the human S14 promoter luciferase reporter. However, we 
determined that S14 is regulated by synthetic progestin R5020 in the T47D human breast cancer cell line. Using 
this cell line, we showed that S14 was induced nearly 5.8 fold, and that this induction was coincident with a 1.3 
fold increase of FASN. This result demonstrates that the progesterone receptor in human T47D cells regulates 
S14 gene expression. 

Previously we showed that S14 overexpression in normal mouse CiT3 cells promoted neutral lipid 
accumulation based on Nile Red/Bodipy cytoplasmic lipid droplet staining and NMR metabolomics 9annual 
report 2009).  Currently, we showed that the progestin R5020 promotes lipid droplet accumulation in T47D 
cells in a similar way to the S14 overexpressing mouse cells. However, due to difficulty of sample preparation 
and the duration of running NMR experiments using our core facility, we developed new techniques to continue 
this study.  Hence, GC-MS methods were developed to quantify the total fatty acids extracted from cells as a 
major tool in evaluating the S14 influence on de novo fatty acid synthesis. In retrospect, we learned that GC-MS 
is far more informative than NMR for studies of fatty acids.  Using GC-MS, we can now quantify 
simultaneously both the de novo fatty acids and fatty acids from the serum that are preformed. It is not possible 
using NMR metabolomics to make this distinction between de novo and preformed fatty acids.   

Using T47D cells, we determined that progestin treatment stimulated the de novo fatty acid synthesis 
pathway in two ways: first, we quantified the fatty acids with 16 carbons, which are known to be the primary 
product of de novo fatty acid synthesis. Secondly, we traced 13C-glucose incorporation into 16 carbon fatty 
acids, which must occur via de novo fatty acid synthesis. Both increases in de novo fatty acids were determined 
to be progestin dependent in T47D cells.  We are currently planning experiments to test the role of S14 using 
knock down constructs to prevent R5020 mediated S14 induction using GC-MS to quantify fatty acids. We will 
also perform a time-series to determine the optimal 13C(U) glucose incubation time needed to quantify the rate 
of 13C enrichment into de novo palmitate synthesis. We hope to prepare these data for future publication. 

It is interesting to note that the level of endogenous S14 is very low in gene expression and not detectable at 
the protein level in all cultured cells examined. Considering that S14 is dispensable in the majority of tissue 
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culture cells we have evaluated to date, further studies of S14 will require experiments using mouse models or 
human tissue explants, which are outside the scope of this project.  For example, binding partners for S14 may 
not be expressed in tissue culture cells, but instead S14 and interacting proteins could require both the 
physiology and architecture within the animal.  It seems that cell culture systems cannot effectively model the 
biology of the S14 affected cancers.  We have determined that S14 does not influence gene expression, and 
have acquired some additional correlative data regarding the function of S14 in tissue culture.  
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lipid biosynthesis in the lactating mammary gland. 2009 Meeting of the Endocrine Society.  
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SM Anderson, MC Rudolph, EA Wellberg, TD Russell, and MC Neville. Regulation of the Lipogenic Pathway 
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